Notation

Notation isn’t just about using arbitrary symbols to represent quantities. Consistent use of notation can help reveal the structure and relationships present in a collection of ideas, such as statistical inference, and can help clarify the roles of the various quantities used in data analysis. To emphasise the structure in the notation we include a brief overview here of the different types of notation and where they have been used.

Greek Letters

Greek letters are frequently used in mathematics for a range of purposes. You will have seen the Greek letter ‘p’, [latex]\pi[/latex], used for the area of the unit circle.
The most important role of Greek letters for us has been to signify a population parameter. The table below shows the ones we have used in this role and others, listed alphabetically.

Greek symbols

Letter Role Chapter
[latex]\alpha[/latex] probability of a Type I error Chapter 15
[latex]\beta[/latex] probability of a Type II error Chapter 15
population intercept ([latex]\beta_0[/latex]) & slope ([latex]\beta_1[/latex]) Chapter 18
[latex]\eta[/latex] population median Chapter 24
[latex]\theta[/latex] arbitrary population parameter Chapter 18
[latex]\lambda[/latex] Poisson mean Chapter 11
[latex]\mu[/latex] population mean Chapter 10
[latex]\pi[/latex] used in Normal distribution Chapter 12
[latex]\rho[/latex] population correlation Chapter 18
[latex]\sigma[/latex] population standard deviation Chapter 10
[latex]\phi[/latex] signal-to-noise ratio Chapter 15
[latex]\chi[/latex] [latex]\chi^2[/latex] distribution Chapter 22

The whole Greek alphabet, showing the names and English equivalents of these letters, is given for reference in the below.

The Greek alphabet

A [latex]\alpha[/latex] alpha a
B [latex]\beta[/latex] beta b
[latex]\Gamma[/latex] [latex]\gamma[/latex] gamma g
[latex]\Delta[/latex] [latex]\delta[/latex] delta d
E [latex]\epsilon[/latex] epsilon e
Z [latex]\zeta[/latex] zeta z
H [latex]\eta[/latex] eta e
[latex]\Theta[/latex] [latex]\theta[/latex] theta th
I [latex]\iota[/latex] iota i
K [latex]\kappa[/latex] kappa k
[latex]\Lambda[/latex] [latex]\lambda[/latex] lambda l
M [latex]\mu[/latex] mu m
N [latex]\nu[/latex] nu n
[latex]\Xi[/latex] [latex]\xi[/latex] xi ks
O o omicron o
[latex]\Pi[/latex] [latex]\pi[/latex] pi p
P [latex]\rho[/latex] rho r
[latex]\Sigma[/latex] [latex]\sigma[/latex] sigma s
T [latex]\tau[/latex] tau t
Y [latex]\upsilon[/latex] upsilon u
[latex]\Phi[/latex] [latex]\phi[/latex] phi f
X [latex]\chi[/latex] chi ch
[latex]\Psi[/latex] [latex]\psi[/latex] psi ps
[latex]\Omega[/latex] [latex]\omega[/latex] omega o

Capital Letters

We have generally used capital letters to denote random variables, with lowercase letters used for particular outcomes of these. For example, [latex]\overline{x}[/latex] denotes a particular number, the mean from a sample, whereas [latex]\overline{X}[/latex] denotes the random process of taking a random sample and returning the mean.

We have had two main uses for random variables. Firstly we have thought of them as models for sampling from populations. The random variable [latex]X[/latex] might be the height of a randomly chosen female, for instance.
The second use has been to discuss the sampling distribution of statistics. In Chapter 5 we used the sample mean [latex]\overline{x}[/latex] to summarise the location of an observed distribution, while in Chapter 13 we used the random variable [latex]\overline{X}[/latex] to think about how [latex]\overline{x}[/latex] would change from sample to sample.

Other Symbols

The table below shows a list of some of the other symbols used in this book, together with the first section that discusses their use and meaning.

Other symbols

Symbol Role Section
[latex]M[/latex] sample median Chapter 4
[latex]Q_j[/latex] [latex]j[/latex]th quartile Chapter 4
[latex]n[/latex] sample size Chapter 5
[latex]\overline{x}[/latex] sample mean
[latex]s[/latex] sample standard deviation Chapter 5
[latex]r[/latex] Pearson correlation coefficient Chapter 7
[latex]p[/latex] population proportion Chapter 8
[latex]\hat{p}[/latex] sample proportion
[latex]P(\cdot)[/latex] probability Chapter 8
[latex]N[/latex] population size Chapter 10
[latex]E(\cdot)[/latex] expected value
[latex]\mathrm{var}(\cdot)[/latex] variance Chapter 10
[latex]\mathrm{sd}(\cdot)[/latex] standard deviation
[latex]e[/latex] base of natural logarithms Chapter 12
[latex]z[/latex] [latex]z[/latex] score Chapter 12
[latex]\mathrm{se}(\cdot)[/latex] standard error Chapter 14
[latex]t[/latex] [latex]t[/latex] statistic Chapter 14
df degrees of freedom
[latex]t^{*}[/latex] critical [latex]t[/latex] statistic Chapter 14
[latex]z^{*}[/latex] critical [latex]z[/latex] score Chapter 17
OR odds ratio Chapter 17
[latex]F[/latex] [latex]F[/latex] statistic Chapter 19
[latex]S[/latex] signed-rank statistic Chapter 24
[latex]W[/latex] Wilcoxon statistic Chapter 24
[latex]H[/latex] Kruskal-Wallis statistic Chapter 24
[latex]r_S[/latex] Spearman correlation coefficient Chapter 24

Licence

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

A Portable Introduction to Data Analysis Copyright © 2024 by The University of Queensland is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.

Share This Book